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Background: Observational studies using traditional research
designs suggest that influenza vaccination reduces hospitaliza-
tions and mortality among elderly persons. Accordingly, health
authorities in some countries prioritize vaccination of this popu-
lation. Nevertheless, questions remain about this policy's effec-
tiveness given the potential for bias and confounding in obser-
vational data.

Objective: To determine the effectiveness of the influenza vac-
cine in reducing hospitalizations and mortality among elderly
persons by using an observational research design that reduces
the possibility of bias and confounding.

Design: A regression discontinuity design was applied to the
sharp change in vaccination rate at age 65 years that resulted
from an age-based vaccination policy in the United Kingdom. In
this design, comparisons were limited to individuals who were
near the age-65 threshold and were thus plausibly similar along
most dimensions except vaccination rate.

Setting: England and Wales.

Participants: Adults aged 55 to 75 years residing in the study
area during 2000 to 2014.

Intervention: Seasonal influenza vaccine.

Measurements: Hospitalization and mortality rates by month of
age.

Results: The data included 170 million episodes of care and 7.6
million deaths. Turning 65 was associated with a statistically and
clinically significant increase in rate of seasonal influenza vacci-
nation. However, no evidence indicated that vaccination re-
duced hospitalizations or mortality among elderly persons. The
estimates were precise enough to rule out results from many
previous studies.

Limitation: The study relied on observational data, and its focus
was limited to individuals near age 65 years.

Conclusion: Current vaccination strategies prioritizing elderly
persons may be less effective than believed at reducing serious
morbidity and mortality in this population, which suggests that
supplementary strategies may be necessary.

Primary Funding Source: National Institute on Aging.
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Every year, 10% to 20% of the world's population
contracts influenza, with resulting societal costs of
billions of dollars (1). Experts disagree about which
groups to target for vaccination. Many Western Euro-
pean countries focus on high-risk groups, such as el-
derly persons and those with serious health conditions,
because they bear much of the burden of influenza-
related morbidity and mortality. In contrast, epidemio-
logic models suggest that vaccinating children—a group
likely to transmit influenza—may protect high-risk groups
more than vaccinating the high-risk groups themselves (2-
4), and studies have shown herd effects from influenza
vaccination (5-11).

The choice between the 2 strategies depends on
the effectiveness of the influenza vaccine in reducing
hospitalizations and mortality among elderly persons.
Two clinical trials since 1970 of the standard influenza
vaccine have targeted community-dwelling elderly per-
sons (12, 13). Both showed efficacy against influenza,
but neither had sufficient power to examine hospitaliza-
tions or mortality. Observational studies have found that
vaccination is associated with reductions in severe illness
among elderly persons, but observational studies can
produce misleading results. For example, cohort and
case-control studies have found 20% to 50% reductions
in hospitalizations and deaths in vaccinated elderly popu-
lations (14-16), but these results may be contaminated by
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selection bias. Studies using another observational re-
search design, difference-in-differences, have compared
vaccinated and unvaccinated elderly persons during and
outside influenza season and concluded that vaccination
reduced mortality and hospitalizations (17-19). These
studies found that the vaccinated populations also had
lower morbidity and mortality outside influenza season,
which suggests selection bias.

Our research used another observational design
known as regression discontinuity. We chose this de-
sign because it has features that protect against selec-
tion bias and are not available in the other observa-
tional research designs used to study this issue.

METHODS
Data Sources

We used data from patient surveys and administra-
tive records. Vaccination data came from 2 sources.

See also:
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The first, the Research and Surveillance Centre of the
Royal College of General Practitioners, provided vac-
cine uptake data from 2003 to 2012 from computerized
medical records at approximately 100 monitored prac-
tices of general practitioners (GPs) across England and
Wales. The second source was the Primary Care Trust
Patient Surveys of 2004 to 2005, which surveyed a rep-
resentative sample of patients enrolled in the National
Health Service across England and Wales.

Hospitalization data from 2000 to 2011 came from
Hospital Episode Statistics, a data warehouse of all ad-
missions and outpatient appointments in English Na-
tional Health Service hospitals or treatment centers.
Each record includes demographic information about
each patient, along with International Classification of
Diseases (ICD) codes identifying cause of admission
(Appendix 1, available at Annals.org). Mortality data
from 1990 to 2014 came from the Office for National
Statistics. Each record includes gender, month and year
of birth, month and year of death, and ICD codes that
describe the underlying cause of death and sequence
of conditions leading to death. Last, we obtained spe-
cial tabulations from the 2001 and 2011 censuses of
England and Wales to enumerate the at-risk population
(Appendix 1).

Procedures and Outcomes

We constructed 3 analytic data sets: 1 for vaccina-
tion rates, 1 for hospitalization rates, and 1 for mortality
rates. We calculated all rates separately by gender.

We combined GP data with survey data to con-
struct vaccination rates. Data from GPs reflect uptake of
seasonal influenza vaccination for patients vaccinated
at their GP's office. We received annual vaccination
rates for 1-year age groups by gender, with data on
approximately 1.06 million patients per year (9.6 mil-
lion patient-years). A previous study found that the GP
data are nationally representative (20). Because these
data may miss vaccinations given in workplaces or
pharmacies, we complemented them with patient sur-
vey data, which cover approximately 120 000 patients
each year (240 000 total). Patient surveys occurred be-
tween January and April, when seasonal influenza vac-
cines were no longer being regularly administered, and
included a 12-month retrospective question about vac-
cination that captured status for the previous influenza
season. We constructed vaccination rates by year of
age.

We calculated numerators for hospitalizations and
deaths from any cause and from causes plausibly re-
lated to influenza. Our hospitalization data cover 170
million episodes of care from April 2000 to March
2011. For each hospital admission, we recorded
whether an ICD code for pneumonia, influenza, respi-
ratory diseases, or circulatory diseases appeared any-
where in the patient's list of ICD codes (Appendix 1).
Our mortality data include 7.6 million deaths from Jan-
uary 2000 to December 2014. Each record includes
cause of death determined by the coroner or the phy-
sician who attended the decedent's last illness. We
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Figure 1. Age profile of vaccination status.
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Age is calculated at the time of vaccination. Vaccinations are given in
September and October, so a substantial fraction of persons aged 64
y will turn 65 during the influenza season. For this reason, the regres-
sions were fitted dropping the cell at 64 y. (Data from Royal College of
General Practitioners 2003-2012.).

coded death categories using the same ICD codes as
used for hospitalizations.

We identified denominators and calculated rates of
hospitalization and mortality per 10 000 persons by col-
lapsing counts to the level of month of birth by month
of event (hospitalizations or mortality) and dividing by
the enumerated population (in tens of thousands) in each
month of birth by month of event—for example, the hos-
pitalization rate in March 2010 for adults born in June
1943. We restricted month of event to lie between Octo-
ber and March, the period during which the influenza vi-
rus typically circulates in the Northern Hemisphere.

Statistical Analysis

In the 2000-t0-2001 influenza season, U.K. vaccina-
tion policy was revised to prioritize vaccination of per-
sons aged 65 years or older (Supplement Table 1,
available at Annals.org). We used the sharp increase in
vaccination rates at age 65 years (Figure 1) to conduct
the regression discontinuity analysis (21-27). In brief,
the regression discontinuity design tests whether the
increase in vaccination rates was associated with a cor-
responding decrease in hospitalization and mortality
rates. The analysis compared persons just older than
versus just younger than 65 years. If these groups are
similar, the analysis mimics a randomized trial for those
near age 65 years. Some persons younger than 65
years were vaccinated, and some older than 65 years
were not, so our study was analogous to a randomized
trial with imperfect adherence (28).

We plotted age profiles of the relevant variables,
visually inspected them for discontinuities, and then fit-
ted regression models to estimate changes in vaccina-
tion rates and outcomes. Estimation proceeded in 3
steps. First, using data on persons aged 55 to 75 years,
we modeled vaccination rate as a quadratic function of
age using regressions estimated at the year-of-age
level, with a break at age 65 years. Next, using data on
persons aged 60 to 70 years, we modeled hospitaliza-
tion and mortality rates as quadratic functions of age
using regressions estimated at the level of month of
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age by month of hospitalization or mortality, with a
break at age 65 years. Finally, we divided the change in
hospitalization or mortality rate when turning 65 by the
change in vaccination rate when turning 65. This final step
rescaled the “intention-to-treat” effect of the age-65 vac-
cination guideline into an actual effect of vaccination. We
transformed the coefficients to percentage terms relative
to the baseline rate of hospitalization at age 64 years to
calculate vaccine effectiveness and associated 95% Cls
(Appendix 2, available at Annals.org). All analyses used
Stata SE, version 15.0 (StataCorp).

The range of ages to include in the regression (for
example, 60 to 70 years) is a design choice that affects
power. A wide age range increases power but takes the
analysis further from the policy-induced discontinuity at
age 65 years, potentially introducing bias. We com-
puted the narrowest age range at which we could de-
tect 25% effectiveness (a value lower than most cohort
and case-control studies estimated) with 80% power.
We found that an age range of 63.5 to 66.5 years was
sufficient for all-cause hospitalizations or mortality, 59.7
to 70.3 years was sufficient for pneumonia or influenza
hospitalizations, and 57.7 to 72.3 years was sufficient
for pneumonia or influenza mortality.

Role of the Funding Source

Neither the National Institute on Aging nor the Na-
tional Institute of Food and Agriculture had any role in
the study's design, conduct, or analysis or the decision
to submit the manuscript for publication.

RESULTS

At age 65 years, the rate of seasonal influenza vac-
cination increased 22.8 percentage points (95% Cl,
21.7 to 23.9 percentage points) in the GP data and 19.3
percentage points (Cl, 15.8 to 22.9 percentage points)
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in the survey data (Supplement Table 2, available at
Annals.org). Changes in vaccination rate were larger for
women (23.7 percentage points [Cl, 22.4 to 25.0 per-
centage points]) than men (21.8 percentage points [C],
20.8 to 22.9 percentage points]) in the GP data, but in
the survey data men had larger changes (21.7 percent-
age points [Cl, 17.4 to 26.1 percentage points]) than
women (17.0 percentage points [Cl, 14.1 to 20.0 per-
centage points]). The increases in vaccination rate at
age 65 years were visually apparent, and the regression
functions appeared sufficiently flexible to fit the age
profiles (Figure 1 and Supplement Figure 1 [available
at Annals.org]). Vaccination rates in the GP data were
lower at all ages than those in the survey data, which
also include vaccinations received outside physicians'
offices. The pattern remained even when the sample of
GP data was restricted to match the years covered by
the survey data (Supplement Figure 2, available at An-
nals.org). When we estimated vaccination rate in-
creases at age 65 years separately by season, the coef-
ficients ranged from 18.2 to 26.2 percentage points
(Supplement Table 3, available at Annals.org). Self-
reported health, education, and gender were similar
for persons just younger than and those just older than
65 years (Supplement Table 4, available at Annals.org).

Hospitalization rates did not change significantly at
age 65 years (Table 1). They were higher for men than
women and increased with age, but the age profiles of
hospitalizations for any cause and for pneumonia or in-
fluenza were smooth across the age-65 threshold for
both genders (Figure 2, top). At age 65 years, total hos-
pitalizations increased by 9.1 (Cl, —1.4 to 19.6) per
10 000 persons on a base rate of 1011.8, pneumonia
and influenza hospitalizations increased by 0.6 (Cl,
—1.5t0 2.7) per 10 000 persons on a base rate of 46.6,
respiratory hospitalizations increased by 2.3 (Cl, —2.8

Table 1. Hospital Admissions*

Outcome Hospital Admissions
Any Cause Pneumonia and Respiratory Circulatory
Influenza
All
Change in admission rate at age 65y per 10 000 persons (95% Cl) 9.1(-1.4t019.6) 0.6(-1.5t02.7) 2.3(-2.8t07.4) 5.1(-2.7t0 12.8)
Admission rate at age <65y per 10 000 persons 1011.8 46.6 277.2 509.9

Effectiveness (95% Cl), %

Men
Change in admission rate at age 65y per 10 000 persons (95% Cl)

Admission rate at age <65y per 10 000 persons 1141.8

Effectiveness (95% ClI), %

Women
Change in admission rate at age 65y per 10 000 persons (95% Cl)

Admission rate at age <65y per 10 000 persons 887.6
-3.7(-9.4t01.9)

Effectiveness (95% Cl), %

-3.9(-8.5t0 0.6)

-5.8(-253t012.9) -3.6(-11.6t04.3) -4.4(-11t02.3)

10.4 (-4.4t0 25.1) 1.4(-1.4t04.2) 1.3(-5.8t0 8.4) 4(-7.0to 15.0)
54.0 305.7 617.4

-4.2(-10.1t0 1.8) -11.9(-35.9to 11.6) -2(-12.6t0 8.3) -3(-11.1t0 5.1)

7.9(-411t019.9) -0.1(-2.5t02.2) 3.3(-2.91t09.5) 6.1(-2.3to0 14.5)
39.5 249.9 407.3

1.4(-23.6t023.3) -56(-16.1t04.8) -6.3(-15t02.3)

* Age is computed as age on December 31 of the corresponding influenza season. All regressions include month-of-birth dummies. The regres-
sions also include a quadratic polynomial in age fully interacted with an indicator variable for age =65 y. The regressions are run on 1-mo age cells
weighted by the population used to compute the rate in each cell. SEs are clustered on age in months. Admissions are included in a category if
there is any mention of the condition on the discharge records. The International Classification of Diseases (ICD) codes included in each category
are as follows: for pneumonia and influenza, ICD, Ninth Revision (ICD-9), codes 480-488 and ICD, 10th Revision (ICD-10), codes J09-J18; for
respiratory diseases, ICD-9 codes 460-519 and ICD-10 codes J00-J99; and for circulatory diseases, ICD-9 codes 390-459, 785, and 997 and
ICD-10 codes 100-199. The sample includes only admissions during the influenza season (October-March) for the 2000-2001 through 2010-2011

influenza seasons.
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Figure 2. Age profile of hospital admissions (top) and
mortality rates (bottom).
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seasons 2000-2001 to 2010-2011. Bottom. Includes deaths during
influenza seasons 2000-2001 to 2013-2014.

to 7.4) per 10 000 persons on a base rate of 277.2, and
circulatory hospitalizations increased by 5.1 (Cl, —2.7 to
12.8) per 10 000 persons on a base rate of 509.9. When
the size of the change in vaccination rate at age 65
years was taken into account, the implied effectiveness
of vaccination was —3.9% (Cl, —8.5% to 0.6%) for total
hospitalizations, —5.8% (Cl, —25.3% to 12.9%) for
pneumonia and influenza hospitalizations, —3.6% (Cl,
—11.6% to 4.3%) for respiratory hospitalizations, and
—4.4% (Cl, —11.0% to 2.3%) for circulatory hospitaliza-
tions. Changes did not differ significantly between men
and women for any category of hospitalization.
Mortality rates also had no significant changes for
any category at age 65 years (Table 2). They were
higher for men than women and increased with age,
but the age profiles of all-cause mortality and of mor-
tality related to pneumonia or influenza were smooth
across the age-65 threshold for both genders (Figure 2,
bottom). The all-cause mortality rate increased by 1.1
(Cl, =1.0 to 3.3) per 10 000 persons on a base rate of
114.4, the pneumonia and influenza mortality rate in-
creased by 0.6 (Cl, —=0.2 to 1.4) per 10 000 persons on
a base rate of 15.0, the respiratory mortality rate in-
creased by 0.0 (Cl, —=1.1 to 1.1) per 10 000 persons on
a base rate of 30.3, and the circulatory mortality rate
increased by 0.1 (Cl, —=1.1 to 1.4) per 10 000 persons
on a base rate of 46.1. Rescaling these by the estimated
change in vaccination rate indicates vaccine effective-
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ness of —4.3% (Cl, —12.6% to 3.8%) for all-cause mor-
tality, —17.3% (Cl, —40.7% to 6.0%) for pneumonia and
influenza deaths, —0.1% (Cl, —16.2% to 14.9%) for re-
spiratory deaths, and —1.4% (Cl, —13.0% to 9.8%) for
circulatory deaths. Changes did not differ significantly
between men and women for any mortality category.

None of our results were sensitive to the size of the
estimation window around the age-65 threshold (Sup-
plement Figures 3 to 7, available at Annals.org) or to
the use of linear rather than quadratic functions to
model age (Supplement Tables 5 and 6, available at
Annals.org). We found similar results when we re-
stricted the sample period to peak influenza season,
which we defined as months with rates of influenza-
like illness higher than 20 cases per 10 000 persons
(Supplement Tables 7 and 8, available at Annals
.org). We did not find strong differences when strat-
ifying the analysis by how well the vaccine matched
the circulating strain of influenza (Supplement Tables
9 and 10, available at Annals.org), the severity of the
influenza season (Supplement Tables 11 and 12,
available at Annals.org), or the primary circulating
strain of influenza (Supplement Tables 13 and 14,
available at Annals.org).

DISCUSSION

Our results showed a sharp increase in influenza
vaccination rates at age 65 years with no matching de-
crease in hospitalization or mortality rates.

To understand how these estimates differ from those
in the existing literature, we considered whether our Cls
for vaccination effects were compatible with the results of
previous studies. To compare hospitalization estimates,
we produced box-and-whisker plots of Cls for our hospi-
talization effectiveness estimates (Figure 3, top). We
added estimates of average vaccine effectiveness from
the literature (bullets) according to the following study
types: cohort, case-control, and difference-in-differences.
For the first 2 types, we drew on results from meta-
analyses to present an overall view of the literature (14,
15). We found that typical estimates of hospitalization
rates from cohort and case-control studies were outside
the 95% Cls of our estimates. Difference-in-differences
studies had smaller estimates, but we still rejected the hy-
pothesis that our effects for respiratory hospitalizations
were equal to the difference-in-differences estimates from
a U.K.-based study (17). We did a similar comparison for
mortality estimates (Figure 3, bottom). It showed that typ-
ical estimates from cohort and case-control studies dif-
fered significantly from our own, and we rejected the hy-
pothesis that our estimates for all-cause mortality were
equal to the difference-in-differences estimates from a
study based in northern California (18). We concluded
that our estimates of vaccination effectiveness differ from
those in the literature and that the differences cannot be
explained by sampling variation alone.

One explanation for these differences is that our
regression discontinuity estimates were subject to less
bias and confounding than the estimates from other
observational studies in the literature. The direct com-
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parisons between vaccinated and unvaccinated partic-
ipants in cohort and case-control studies are most
likely to be misleading, and these studies reported the
largest effects. The difference-in-differences design can
eliminate large biases, and these studies reported
more modest effects (29). The regression discontinuity
design that we used can eliminate even more bias,
which we believe explains why our study found the
smallest effects.

Alternative explanations exist. For example, we
used U.K. data, and many existing studies used U.S.
data. Furthermore, our study estimated effects for per-
sons near age 65 years, whereas many existing studies
estimated effects for all adults over a certain age. How-
ever, we do not believe that these explanations are
plausible, because our results differ from those of other
U.K.-based studies (17, 30-32) and because studies
that estimated effects for different age groups typically
found larger effects for persons near age 65 years than
for older participants (17-19).

Another possible explanation is that the vaccinated
and unvaccinated persons in our study were equally
protected from infection by herd effects from vaccina-
tions in their common contacts. However, the popula-
tion we studied was roughly half vaccinated, which is
below levels likely to achieve herd immunity and not
markedly different from rates in previous studies.

Our study has limitations. For example, it relied on
observational data, and all observational studies are at
risk for producing misleading results when the inter-
vention and control groups are not well matched. In the
regression discontinuity design, the relevant factors are
those that change discontinuously at the regression
discontinuity threshold, which in this study was age 65

ORIGINAL RESEARCH

years (23). We could identify only 3 health-related fac-
tors that might change sharply at this age: frequency of
health provider visits, change in employment, and vac-
cination with the pneumococcal vaccine.

Health provider visits may have increased at age 65
years because many persons retire at this age and have
more time to attend to their health. To address this
issue, we used our patient survey data to determine
whether the frequency of contact with health providers
changed at this age across various common types of
visits and tests (Supplement Table 15, available at An-
nals.org). We found no significant changes in the fre-
quency of contacts with health care providers at age 65
years for either gender.

We also considered changes in employment at age
65 years using data from the Quarterly Labour Force
Survey. During our sample period, men in the United
Kingdom could begin receiving State Pensions at age
65 years, and for most of the period, women could be-
gin at age 60 years. We found that at age 65 years, the
male employment rate changed by —8.8 percentage
points (Cl, —10.7 to —6.9 percentage points) and the
female employment rate by —3.1 percentage points
(Cl, —4.8 to —1.4 percentage points). Nevertheless, 3
facts suggest that changes in employment rate did not
substantially bias our estimates in either direction. First,
if retirement were affecting health, our estimates of
hospitalizations and mortality should have less bias for
women than men; however, we found similar effects for
both genders. Second, if a negative health effect of re-
tirement were offsetting a positive health effect of vac-
cination, hospitalization and mortality rates outside in-
fluenza season should have increased at age 65 years.
We found no such effect for any type of hospitalization

Table 2. Mortality*

Outcome Mortality
Any Cause Pneumonia and Respiratory Circulatory
Influenza
All
Change in mortality rate at age 65y 1.1 (-1.0to 3.3) 0.6(-0.2to 1.4) 0(-1.1t0 1.1) 0.1(-1.1to 1.4)
per 10 000 persons (95% Cl)
Mortality rate at age <65y per 10 000 persons 114.4 15.0 30.3 46.1
Effectiveness (95% Cl), % -4.3(-12.6t0 3.8) -17.3(-40.7 to 6) -0.1(-16.2to0 14.9) -1.4(-131t0 9.8)
Men
Change in mortality rate at age 65y 2.7 (-0.5to0 6.0) 1.1(=0.1t0 2.3) 0.6(-1.1t02.3) 0.6(-1.5t02.7)
per 10 000 persons (95% Cl)
Mortality rate at age <65y per 10 000 persons 140.6 18.7 373 63.3
Effectiveness (95% Cl), % -8.9(-19.6t0 1.8) -26.5(-56.1t0 3) -7.2(-28.2t0 13) -4.2(-19.4t0 10.4)
Women
Change in mortality rate at age 65 -0.4(-29t0 2.2) 0.1(-0.8to0 1.1) -0.5(-1.8t00.8) -0.3(-1.6t01.1)
y per 10 000 persons (95% Cl)
Mortality rate at age <65y per 10 000 persons 89.3 11.5 23.4 29.7

Effectiveness (95% Cl), % 1.7 (-10.2to0 12.7)

—4.7 (-39.2 to0 25.8) 9.1(=14.1to 28.3) 3.5(=15.7 to 20.4)

* Age is computed as age on December 31 of the corresponding influenza season. All regressions include month-of-birth dummies. The regres-
sions also include a quadratic polynomial in age fully interacted with an indicator variable for age =65 y. The regressions are run on 1-mo age cells
weighted by the population used to compute the rate in each cell. SEs are clustered on age in months. Deaths are included in a category if there
is any mention of the condition on the death certificates. The International Classification of Diseases (ICD) codes included in each category are as
follows: for pneumonia and influenza, ICD, Ninth Revision (ICD-9), codes 480-488 and ICD, 10th Revision (ICD-10), codes J09-J18; for respiratory
diseases, ICD-9 codes 460-519 and ICD-10 codes J00-J99; and for circulatory diseases, ICD-9 codes 390-459, 785, and 997 and ICD-10 codes
100-199. The sample includes only deaths during the influenza season (October-March) for the 2000-2001 through 2013-2014 influenza seasons.
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Figure 3. Comparing regression discontinuity estimates
with estimates from existing literature for hospitalizations
(top) and mortality (bottom).
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or cause of death (Supplement Tables 16 and 17, avail-
able at Annals.org). Third, the age-65 vaccination
guidelines were instituted in the 2000-to-2001 influ-
enza season, so before the end of 2000 any effect of
retirement was uncontaminated by changes in vaccina-
tion rate. As a result, we should have been able to iden-
tify an isolated retirement effect from 1992 to 2000, but
we found no statistically significant effect of retirement
on all-cause mortality or mortality from pneumonia and
influenza for men turning 65 during this period (Sup-
plement Table 18, available at Annals.org).

Vaccination against pneumococcal infection at age
65 years was also recommended during our study pe-
riod. Pneumococcal vaccination could interact with a
positive effect from influenza vaccination to produce
our results only if the vaccines interfered with each
other or if the former produced a negative effect that
counteracted the latter's positive effect. We believe
that these possibilities are unlikely.

The other limitation of our study was the focus on
persons near age 65 years who responded to the vac-
cination guidelines. For several reasons, we believe
that our estimates captured a large share of the bene-
fits of vaccinating adults older than 65 years. First, per-
sons in our regression discontinuity sample (aged 60 to
70 years) accounted for 23% of influenza hospitaliza-
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tions and about 20% of influenza deaths occurring be-
tween ages 45 and 90 years. The mortality shares be-
come larger when weighted by expected life-years
remaining because the median decedent or inpatient
in this group was older than 65 years. Second, immune
response declines with age (33-35), so vaccine effec-
tiveness was likely to be lower for 80- to 90-year-olds
than for 60- to 70-year-olds. In that sense, our small
estimates probably represent an upper bound on the
average effectiveness of the vaccine for persons older
than 65 years.

A minority of persons younger than 65 years re-
ceived the vaccine. They had poorer average health
than those who began vaccination at age 65 years
(Supplement Table 19, available at Annals.org), and
some likely were immunocompromised or had medical
conditions. Our results cannot speak directly to the vac-
cine's effectiveness in this population. However, be-
cause the vaccine is less effective in immunocompro-
mised persons (36-39), we expect that our estimates
represent an upper bound on its effectiveness in the
near-elderly immunocompromised population.

Evidence from a few randomized controlled trials
has suggested that the influenza vaccine confers some
protection against influenza-like illness in elderly per-
sons. Our findings suggest that its effects on hospital-
izations and mortality are modest at best. Two factors
could explain how the vaccine might reduce influenza
but not more serious outcomes. First, only a minority of
hospitalizations or deaths may be attributable to influ-
enza. A recent study estimated that only 2% to 10% of
pneumococcal cases over an entire year are caused by
influenza (40). Even if the influenza vaccine achieved
50% effectiveness among elderly persons, the net re-
duction in pneumococcal cases would be only 1% to
5%, which lies within the Cls of our estimates for this
outcome. Nevertheless, during peak influenza season,
the fraction of pneumococcal cases caused by influenza
may reach 40% (40), and our analysis focused on the
October-to-March period.

A second factor that may help explain our results is
immune-response heterogeneity. The influenza vaccine
is less effective in immunocompromised persons, who
also face the highest risk for serious influenza-related
complications. Thus, even if the influenza vaccine were
effective at reducing influenza-like illness for the typical
elderly recipient, it would be less effective among el-
derly persons at high risk for hospitalization or death.
Heterogeneity in immune response among elderly per-
sons could therefore reconcile effectiveness against
influenza-like illness with less effectiveness against
more serious outcomes.

In conclusion, our results do not preclude modest
effectiveness of the influenza vaccine against severe
outcomes in elderly persons. Therefore, continued vac-
cination of this population, particularly with high-dose
vaccines, seems appropriate. Our findings raise ques-
tions, however, about the overall effectiveness of a vac-
cination strategy that is limited to standard vaccines
and focuses too much on elderly persons. Supplemen-
tary strategies, such as vaccinating children and others
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who are most likely to spread influenza, may also be
necessary to address the high burden of influenza-
related complications among older adults (41).
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APPENDIX 1: DATA APPENDIX
Hospital Episode Statistics Inpatient Data

These data sets capture episodes of admitted pa-
tient care delivered at National Health Service hospitals
in England or care commissioned by the National
Health Service in other settings. Each record includes
month of birth, gender, date of admission to the hospi-
tal, a detailed description of the treatment received
during the hospital stay, and up to 20 ICD codes de-
scribing the patient's medical conditions. We focused
on file years 2000 to 2010, which include episodes end-
ing between April 2000 and March 2011.

Each file year has between 12 million and 19 mil-
lion episodes of care, for a total of 169 900 052 epi-
sodes for file years 2000 to 2010, inclusive. We first
dropped episodes coded as not completed within the
file year because these are duplicate records and the
information contained in them appears in the following
file year. This resulted in dropping 778 130 episodes
and left 169 121 922 episodes. Each element of the
Hospital Episode Statistics inpatient data corresponds
to a single inpatient episode. Most hospitalizations are
captured in a single episode, but about 22% of epi-
sodes are part of a sequential chain of episodes that
make up a single hospitalization and capture the treat-
ment provided as a person is moved within or across
hospitals. We used date of admission and date of dis-
charge, along with a patient identifier, to aggregate
across the episodes that make up each hospitalization.
A small proportion of episodes (39 602 of 169 121 922)
are missing one of the variables needed to link them to
other episodes; we treated each of these as a complete
hospitalization despite a chance that they were part of a
multiepisode hospital stay. Combining the information
from sequential episodes into a single hospitalization
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record resulted in a data set with 146 327 850 records,
where each record corresponds to a completed hospi-
tal admission.

The definition of hospital admission in these data is
broader than that used in the United States. The Hos-
pital Episode Statistics inpatient data include 5 types of
admissions: ordinary admissions, day-case admissions,
regular day admissions, regular night admissions, and
mothers and babies using only delivery facilities. Ordi-
nary admissions include nonelective admissions and
elective admissions for which an overnight stay in the
hospital is anticipated. Also included in this category
are persons scheduled for a treatment during the day
who end up staying overnight. Day-case admissions are
persons admitted electively who receive treatment dur-
ing the day and do not stay overnight. These are largely
for such procedures as endoscopies and cataract re-
movals. Regular day admissions are persons admitted
for treatment during the day as part of a planned series
of treatments for an ongoing condition. They are
largely coming in for hemodialysis, chemotherapy, or
radiation treatment. Regular night admissions are simi-
lar to regular day admissions except the treatment is
done overnight; these hospitalizations are rare. The first
and fifth categories are what we would observe in a
typical inpatient data set in the United States, whereas
the other treatments would end up in an ambulatory
procedure data set.

For each hospitalization, we coded up indicator
variables both for the primary cause of admission and
for any evidence of a particular condition. For example,
we created an indicator variable for influenza or pneu-
monia that takes on a value of 1 if influenza or pneumo-
nia is the primary cause of admission. We also created
an indicator variable that takes on a value of 1 if an ICD
code for pneumonia or influenza is anywhere in the 20
ICD codes of any of the spells that compose a hospital-
ization. The ICD codes included in each admission cat-
egory are as follows: for influenza, ICD, Ninth Revision
(ICD-9), codes 487 to 488 and ICD, 10th Revision (ICD-
10), codes JO9 to J11; for pneumonia and influenza,
ICD-9 codes 480 to 488 and ICD-10 codes J09 to J18;
for respiratory diseases, ICD-9 codes 460 to 519 and
ICD-10 codes JOO to J99; and for circulatory diseases,
ICD-9 codes 390 to 459, 785, and 997 and ICD-10
codes 100 to 199.

The Appendix Table presents the number of all
types of admissions, ordinary admissions, and emer-
gency admissions for each cause. Comparing across
rows as we restrict the sample first to ordinary admis-
sions and then to emergency admissions (which are a
subset of ordinary admissions) shows that for the prin-
cipal outcome we focus on in the analysis, pneumonia
and influenza, the restrictions result in dropping very
few cases despite reducing the total sample size sub-
stantially. The inclusion of elective admissions or
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planned treatments would primarily increase the
amount of noise in the data. For this reason, we fo-
cused on emergency admissions in our analysis. How-
ever, estimates from the sample of all hospital admis-
sions and ordinary admissions give very similar results.

Creation of Population Denominators for Rates

To create hospitalization and death rates by month
for each month-of-birth cohort, we created a popula-
tion file with estimates of the number of persons who
were alive in a particular month for each cohort. An
example observation is the number of men born in
February 1943 who were alive in April 2007. To create
these population estimates for England and Wales, we
used mortality records and month-level tabulations
prepared for us from the 2001 and 2011 censuses. To
estimate the population between censuses, we fol-
lowed the methodology of the U.S. Census Bureau.
Population levels for persons born in month m were
given by the following difference equation:

(M Q,,;= Q-1 +Births,,, — Deaths,,, , + Migration,,, .

where t is the months elapsed since the 2001 census
and Q,, . is the population estimate for cohort m at the
end of month t. The other 3 variables are births, deaths,
and net migration into England and Wales for cohort m
in month t. We do not have cohort-specific birth counts
or net migration. The lack of birth counts was not rele-
vant because we were generating population estimates
only for adults, but the lack of cohort-specific net mi-
gration was a problem for younger populations. Ap-
pendix Figure 1, however, suggests that migration
rates for our population of interest, 60- to 70-year-olds,
were low. Because of the data limitations, rather than
use Equation 1, we estimated intercensal populations
using the following equation:

(2) Q,:= Q,,¢—1 — Deaths,, ,

We set the first period estimate, Q,, o, equal to the
population in the 2001 census, which was conducted at
the end of April. We then subtracted the deaths of per-
sons in cohort m that occurred in each of the following
119 months until we reached March 2011, which was
when the 2011 census occurred. To determine how
well we captured the changes in population size, we
compared our estimates of the population in March
2011 based on Equation 2 with the actual March 2011
census counts.

Appendix Figure 1 shows the percentage differ-
ence between the population in the 2011 census and
our estimate based on Equation 2. The figure reveals
that net migration affects our estimates for younger co-
horts but that the cohorts we are interested in, persons
aged 60 to 70 years, had low migration rates. The esti-
mates for older cohorts are imprecise because of small
sample sizes. The estimates for elderly persons are also
systematically too high, which may be the result of the
probability of responding to the census declining with
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age. In addition, slippage was very large for persons
around 92 years old. A careful examination of the un-
derlying age profiles suggests that this is due to an
overcount in the 2001 census of persons born between
January and December 1919. This may have occurred
from a small fraction of persons born in 1991 transpos-
ing the last 2 digits of their birth year when entering it
on the census form. Fortunately, this issue is outside the
age range we examine, and the average amount of slip-
page for the cohorts of interest is only about 1%.

We adjusted for the slippage in our estimates using
the same approach as used by the U.S. Census Bureau
to estimate intercensal populations (42). We started
with Q,,0, Q1. Qp 119, as estimated from Equa-
tion 2, and then adjusted for the gap between our pre-
dicted population in March 2011 based on the 2001
census (Q,, 119) and the actual 2011 census population
using the following equation:

t/119
(3) Py = Quy (Census 2011,,/Qpn 119)

where P, , denotes our population estimate for cohort
m in month t and Census 2011, denotes the census
estimate of cohort m from the 2011 census. As noted
earlier, we set Q,, o equal to the population estimate
from the 2001 census. As can be seen from Equation 3,
when t = 119 the population estimate is equal to the
2011 census. In the intervening 118 months, the gap
between the population estimate based on Equation 2
and the actual 2011 census was incrementally adjusted
for.

Because we have mortality data up until 2014, we
continued population estimates through 2014. The
next census is in 2021, so we used Equation 2 to esti-
mate population counts and could not adjust for the
slippage due to migration. As noted earlier, even over
a 10-year period our cohorts of interest had relatively
little net migration, so this is unlikely to be a meaningful
issue for the 3-year period from 2011 to 2014. We took
a similar approach to get estimates for the 1 year be-
fore the 2001 census for which we needed population
denominators. Because our hospital data have records
for England but not Wales, we also needed England-
specific population estimates. We could not get mortal-
ity data for England alone that would allow us to create
estimates using the described approach because of
concerns about shadow disclosure. For this reason, we
estimated the population in England by multiplying the
estimates from Equation 3 by the fraction of each co-
hort from the 2001 census of England and Wales that
resided in England. This is a modest adjustment be-
cause only about 5% of the population resided in
Wales. Appendix Figure 2 plots population and hospi-
talization data for England by age. The black dots in the
figure show the well-known variation in population size
across birth months. Unsurprisingly, hospitalization
counts, which are presented in blue, demonstrate the
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same pattern. The red dots are hospitalization rates,
and they show that using the cohort-specific population
estimates described earlier to estimate hospitalization
rates substantially reduces the monthly variability of the
rates.

APPENDIX 2: TECHNICAL APPENDIX
Regression Discontinuity Design

Because age was not the sole determinant of vac-
cination status, we implemented a 2-stage “fuzzy” re-
gression discontinuity design. This design is analogous
to a randomized experiment with imperfect adherence.
A benefit of the regression discontinuity design is trans-
parency: We plotted age profiles of the relevant vari-
ables to visually inspect for discontinuities and then
fitted regression models to estimate changes in treat-
ments or outcomes.

To determine if the policy affected vaccination, we
tested for a discontinuous change in vaccination rates
at age 65 years. We specified vaccination rates as a
function of age using local polynomial regressions es-
timated at the year-of-age level. In these “first-stage”
regressions, the coefficient of interest was an indicator
variable signifying age 65 years and older, and we con-
trolled for a quadratic in age and an interaction be-
tween that quadratic and the indicator for age 65 years
and older. We limited the sample to a bandwidth of 10
years of age around the age-65 threshold in our base-
line regression (that is, persons aged 55 to 75 years)
and checked robustness to using alternative band-
widths (Supplement Figures 3 to 7). Our regressions
weighted each year-of-age observation by the number
of patients or survey respondents of that age. We com-
puted robust SEs to generate 95% Cls. The first-stage
regressions took the form:

Va = 60 + 01Za + 92Aa + 93AaZa + 94A§
+ 0A2Z, + u,

The dependent variable was the vaccination rate
for individuals of age a. Z, was an indicator equal to
unity if a = 65 years and 0 otherwise. A, was the run-
ning variable, or age in years, normalized such that
A,= 0 when a = 65 years of age. The coefficient of
interest, 6,, represents the first-stage effect of the vac-
cination policy on the vaccination rate V,. Our regres-
sions weighted each observation by the number of pa-
tients or survey respondents of age a.

To determine if the sharp, policy-induced increase
in vaccination rates at age 65 years affected hospitaliza-
tions or mortality, we tested for discontinuous changes
in these outcomes at age 65 years. We specified hos-
pitalization and mortality rates as functions of age using
local polynomial regressions estimated at the month-
of-age by month-of-event level. The coefficient of inter-
est was again an indicator variable signifying age 65
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years and older, and we controlled for a quadratic in
age and an interaction between that quadratic and the
indicator for age 65 years and older. For additional pre-
cision, we included month-of-birth indicators. We lim-
ited the sample to a bandwidth of 60 months of age
around the age-65 threshold in our baseline regression
(persons aged 60 to 70 years) and checked robustness
to using alternative bandwidths. Our regressions
weighted each month-of-age by month-of-event obser-
vation by the corresponding population. An illustrative
observation is the hospitalization rate in March 2010 for
persons born in June 1943. We computed SEs clus-
tered on month of age to generate 95% Cls. Using
these data, we estimate “reduced-form” regressions of
the form:

— A A A2
Ym~t2 = Qo + a'lth + a2Amt + a3Athmt + a4Amt
+ aSAthmt + 8m + Vmt

The dependent variable was the event rate in
month t for persons born in month m. (To convert event
counts [for example, the number of hospitalizations in
month t for persons born in month m] to event rates, we
divided by the estimated number of persons born in
month m and living in month t using census data. We
then multiplied by 12 x 10 000 so that rates repre-
sented yearly hospitalizations per 10 000 persons.) Z,,,
was an indicator for whether persons born in month m
were aged 65 years or older by the vaccination dead-
line corresponding to month t. A_, was the running
variable, or the age in month t for persons born in
month m, normalized such that A, = 0 when persons
born in month m were exactly 65 years old by the vac-
cination deadline corresponding to month t. The coef-
ficient of interest, a,, represents the reduced-form ef-
fect of the vaccination guidelines on the event rate Y,,..
Our regressions weighted each observation by the
population of persons born in month m and alive in
month t, and we included month-of-birth effects, §,,, for
additional precision.

We identified 7, the effect of vaccination on out-
come Y, by combining the first-stage and reduced-form
results. Specifically, we divided the effect of turning 65
on outcome Y, or a4, by the effect of turning 65 on
vaccination status, D, or 6.

T=aq + 0,

This strategy was analogous to using the age-65
discontinuity as an instrument to identify the causal ef-
fect of vaccination. In this case, we estimated a, and 6,
using separate samples, which is equivalent to a
2-sample instrumental variables design. We computed
SEs for the ratios with the delta method. We trans-
formed the coefficients to percentage terms relative to
the baseline rate of hospitalizations at age 64 years to
calculate vaccine effectiveness and 95% Cls (see follow-
ing section for details).
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Calculation of Attack Rates

The effectiveness rates computed in randomized
controlled trials and studies with cohort, case-control,
and difference-in-differences designs is the difference
in the event rates between the treatment and control
groups divided by the control group event rate.

Effectiveness = (Rateconiro) — Raterrea:) + Ratecontrol

In this context, Rate represents hospital admission
rates or death rates.

In our study, raw hospitalization rates at age 64
years may not represent the true hospitalization rates
for untreated persons—the benchmark used in other
studies—because approximately 50% of persons aged
64 years are vaccinated. This distinction is irrelevant
when rescaling our point estimates because the point
estimates imply that vaccination does not affect the out-
comes. It becomes important when computing Cls,
however, because the Cl boundaries may correspond
to nontrivial vaccination effects. Effects of this size imply
that the age-64 hospitalization rate underestimates the
true hospitalization rate for untreated persons in this
age range. To preserve the duality between Cls and
hypothesis tests, at the Cl edges we used the proce-
dure described in the following paragraphs to rescale
the age-64 event rates. Without this rescaling, the 95%
Cl edges could not be interpreted as a = 0.05 tests of
the null hypothesis that the vaccine's effectiveness is
equal to the value at the Cl edge.

We begin by noting that the fuzzy regression dis-
continuity design generates an estimate of the differ-
ence in event rates between the treated and control
groups due to vaccination. This difference is denoted
by 7, where 7= Rater,o.: — Rateconyo- 10 €stimate 7, we
divided the change in hospitalization or mortality rates
at age 65 by the change in vaccination rates at age 65
(see equation earlier).

The hospitalization and mortality rates in the treat-
ment group are a function of the attack rate in the treat-
ment group, denoted by A, and the vaccine effective-
ness (the proportion of influenza hospitalizations and

deaths that the vaccine protects against), denoted by V.
Thus Rate,e. = Ar x (1 — V4) and Ratecgpio = Ac. In a
randomized controlled trial, randomization ensures that
the treatment and control groups have similar attack
rates (that is, A = Ac). These expressions clarify that, if
the vaccine has any effectiveness against influenza, the
observed hospitalization and mortality rates in the
treatment group underestimate the attack rates. Ran-
domized controlled trials thus normalize by the control
group rates, rather than the overall rates, when effec-
tiveness is computed.

If no one younger than 65 years were vaccinated,
we could use the raw hospitalization or mortality rates
for those just under age 65, Rate ; 45, to estimate Rate-
Control- IN OUr context, however, a large share of persons
just under age 65 are vaccinated (49.8%, per Supple-
ment Table 2). Rate ; .5 thus underestimates Ratecontror
assuming that the vaccine has any effectiveness. To re-
construct the hospitalization and mortality rates below
age 65 years, we exploit the fact that the attack rate for
treated (vaccinated) persons, Ay, is their observed rate
minus the treatment effect—that is, Ay = Rater,c.. — T
The attack rate for control (unvaccinated) persons is, by
definition, Ac = Ratecono- Let Prand P represent the
proportions of treated and control persons, respec-
tively. We can express the attack rate just below age 65
years as a weighted average:

A 165 = PT(RateTreat - TT) + PCRateContro/

= (PTRateTreat + PCRateContro/) — Prrr

= Rate ; 45 — Pr7r

This expression suggests a simple way to estimate
the attack rate at age 65 years: Take the hospitalization
or mortality rate below age 65, Rate ; 45, and subtract
the treatment effect estimate multiplied by the propor-
tion of treated persons below age 65, Prr. This calcu-
lation requires the assumption that the treatment effect
is similar for treated persons younger than and older
than 65 years, but we need this assumption regardless
to generalize the estimates.

Appendix Table. Summary of Hospital Admission Types

Admission Type Total Influenza, n Pneumonia and Respiratory, n Circulatory, n
Observations, n Influenza, n
Primary cause of admission
Admission 146 327 850 25673 1394 095 7 748 523 11156 101
Ordinary admissions 87 520 312 25 448 1380 560 7188577 7 681 902
Emergency admissions 49 105 923 24 485 1354 230 6003 755 5864 884
Anywhere on admission record
Admission 146 327 850 37710 2107 357 17120912 31134522
Ordinary admissions 87 520 312 36213 2086 153 14105 929 21 541 385
Emergency admissions 49105 923 32240 1984 969 11082872 16 203 271
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Appendix Figure 1. Comparing 2011 census with

estimate.
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Appendix Figure 2. Effect of population denominators.
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